Adaptation of gltA and ssrA assays for diversity profiling by Illumina sequencing to identify Bartonella henselae, B. clarridgeiae and B. koehlerae

Author:

Power Rosemonde Isabella1ORCID,Calvani Nichola Elisa Davies1ORCID,Nachum-Biala Yaarit2ORCID,Salant Harold2ORCID,Harrus Shimon2ORCID,Šlapeta Jan1ORCID

Affiliation:

1. Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney 2006, Australia

2. Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel

Abstract

Introduction. Bartonellosis is an emerging zoonotic disease caused by bacteria of the genus Bartonella . Mixed Bartonella infections are a well-documented phenomenon in mammals and their ectoparasites. The accurate identification of Bartonella species in single and mixed infections is valuable, as different Bartonella species have varying impacts on infected hosts. Gap Statement. Current diagnostic methods are inadequate at identifying the Bartonella species present in mixed infections. Aim. The aim of this study was to adopt a Next Generation Sequencing (NGS) approach using Illumina sequencing technology to identify Bartonella species and demonstrate that this approach can resolve mixed Bartonella infections. Methodology. We used Illumina PCR amplicon NGS to target the ssrA and gltA genes of Bartonella in fleas collected from cats, dogs and a hedgehog in Israel. We included artificially mixed Bartonella samples to demonstrate the ability for NGS to resolve mixed infections and we compared NGS to traditional Sanger sequencing. Results. In total, we identified 74 Ctenocephalides felis, two Ctenocephalides canis, two Pulex irritans and three Archaeopsylla e. erinacei fleas. Real-time PCR of a subset of 48 fleas revealed that twelve were positive for Bartonella , all of which were cat fleas. Sanger sequencing of the ssrA and gltA genes confirmed the presence of Bartonella henselae , Bartonella clarridgeiae and Bartonella koehlerae . Illumina NGS of ssrA and gltA amplicons further confirmed the Bartonella species identity in all 12 flea samples and unambiguously resolved the artificially mixed Bartonella samples. Conclusion. The adaptation and multiplexing of existing PCR assays for diversity profiling via NGS is a feasible approach that is superior to traditional Sanger sequencing for Bartonella speciation and resolving mixed Bartonella infections. The adaptation of other PCR primers for Illumina NGS will be useful in future studies where mixed bacterial infections may be present.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3