Quinolone-resistant uropathogenic E. coli: is there a relation between qnr genes, gyrA gene target site mutation and biofilm formation?

Author:

Sultan Amira M.1ORCID,Amer Ghada F.2,Nabiel Yasmin1

Affiliation:

1. Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt

2. Anesthesia and Surgical Intensive Care Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt

Abstract

Introduction. The resistance to quinolone reported in uropathogenic Escherichia coli (UPEC) is commonly caused by mutations in the target site encoding genes such as the gyrA gene. Bacterial plasmids carrying resistance genes such as qnr genes can also transfer resistance. Biofilms produced by UPEC can further aid the development of resistant urinary tract infections (UTIs). Hypothesis. Biofilm production is associated with higher prevalence of quinolones resistance genetic determinants. Aim. To detect the prevalence of qnr genes and gyrA gene mutation among quinolone-resistant UPEC and to investigate the relation between these genetic resistance determinants and biofilm production. Methodology. Catheterized urine samples were collected from 420 patients with evidence of UTIs and processed using standard techniques. Isolated UPEC were screened for quinolone resistance using an antimicrobial susceptibility test. Biofilm production among quinolone-resistant isolates was detected using the tissue culture plate method. All quinolone-resistant isolates were screened for qnr genes (qnrA, qnrB and qnrS) by multiplex PCR and for gyrA gene mutation by PCR-RFLP. Results. Two hundred and sixty-four UPEC isolates were detected from 420 processed urine samples. Out of the identified 264 UPEC, 123 (46.6 %) isolates were found to be quinolone-resistant, showing resistance to 1 or more of the tested quinolones. Of the 123 quinolone-resistant UPEC detected, 71(57.7 %) were biofilm producers. The qnr genes were detected among 62.6 % of the quinolone-resistant UPEC, with an estimated prevalence of 22.8, 32.5 and 37.4 % for qnrA, qnrB and qnrS genes, respectively. Additionally, the gyrA gene mutation was identified among 53.7 % of the quinolone-resistant isolates. We reported a significant association between biofilm production and the presence of qnrA, qnrB and qnrS genes. Furthermore, the gyrA gene mutation was significantly associated with biofilm-producing isolates. The coexistence of qnr genes, gyrA gene mutation and biofilm production was demonstrated in almost 40 % of the quinolone-resistant isolates. Conclusions. A significantly higher prevalence of qnr genes (qnrA, qnrB and qnrS) as well as the gyrA gene mutation was found among biofilm-forming UPEC. The reported coexistence of these different resistance mechanisms could aggravate quinolone resistance. Therefore, monitoring of resistance mechanisms and a proper stewardship programme are necessary.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3