Thymidine utilisation pathway is a novel phenotypic switch of Mycoplasma hominis

Author:

Fisunov Gleb Yu.1ORCID,Pobeguts Olga V.1ORCID,Ladygina Valentina G.1,Zubov Alexandr I.1ORCID,Galyamina Mariya A.1ORCID,Kovalchuk Sergey I.2ORCID,Ziganshin Rustam K.2,Evsyutina Daria V.1ORCID,Matyushkina Daria S.1ORCID,Butenko Ivan O.1,Bukato Olga N.1,Veselovsky Vladimir A.1ORCID,Semashko Tatiana A.1,Klimina Ksenia M.31ORCID,Levina Galina A.4,Barhatova Olga I.4,Rakovskaya Irina V.4

Affiliation:

1. Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical–Chemical Medicine, Moscow, Russia

2. Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

3. Department of Biotechnology, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia

4. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia

Abstract

Introduction. Mycoplasma hominis is a bacterium belonging to the class Mollicutes . It causes acute and chronic infections of the urogenital tract. The main features of this bacterium are an absence of cell wall and a reduced genome size (517–622 protein-encoding genes). Previously, we have isolated morphologically unknown M. hominis colonies called micro-colonies (MCs) from the serum of patients with inflammatory urogenital tract infection. Hypothesis. MCs are functionally different from the typical colonies (TCs) in terms of metabolism and cell division. Aim. To determine the physiological differences between MCs and TCs of M. hominis and elucidate the pathways of formation and growth of MCs by a comparative proteomic analysis of these two morphological forms. Methodology. LC–MS proteomic analysis of TCs and MCs using an Ultimate 3000 RSLC nanoHPLC system connected to a QExactive Plus mass spectrometer. Results. The study of the proteomic profiles of M. hominis colonies allowed us to reconstruct their energy metabolism pathways. In addition to the already known pentose phosphate and arginine deamination pathways, M. hominis can utilise ribose phosphate and deoxyribose phosphate formed by nucleoside catabolism as energy sources. Comparative proteomic HPLC–MS analysis revealed that the proteomic profiles of TCs and MCs were different. We assume that MC cells preferably utilised deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Utilisation of deoxyribonucleosides is less efficient as compared with that of ribonucleosides and arginine in terms of energy production. Thymidine phosphorylase DeoA is one of the key enzymes of deoxyribonucleosides utilisation. We obtained a DeoA overexpressing mutant that exhibited a phenotype similar to that of MCs, which confirmed our hypothesis. Conclusion. In addition to the two known pathways for energy production (arginine deamination and the pentose phosphate pathway) M. hominis can use deoxyribonucleosides and ribonucleosides. MC cells demonstrate a reorganisation of energy metabolism: unlike TC cells, they preferably utilise deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Thus MC cells enter a state of energy starvation, which helps them to survive under stress, and in particular, to be resistant to antibiotics.

Funder

Russian Science Foundation

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3