Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons

Author:

Borriss Rainer1,Chen Xiao-Hua1,Rueckert Christian2,Blom Jochen2,Becker Anke2,Baumgarth Birgit2,Fan Ben1,Pukall Rüdiger3,Schumann Peter3,Spröer Cathrin3,Junge Helmut4,Vater Joachim5,Pühler Alfred2,Klenk Hans-Peter3

Affiliation:

1. Bakteriengenetik, Institut für Biologie, Humboldt Universität Berlin, Chausseestrasse 117, 10115 Berlin, Germany

2. Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany

3. DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany

4. ABiTEP, Glienicker Weg 185, 12489 Berlin, Germany

5. Institut für Chemie, Technische Universität Berlin, Franklinstrasse 29, 10587 Berlin, Germany

Abstract

The whole-genome-sequenced rhizobacterium Bacillus amyloliquefaciens FZB42T (Chen et al., 2007) and other plant-associated strains of the genus Bacillus described as belonging to the species Bacillus amyloliquefaciens or Bacillus subtilis are used commercially to promote the growth and improve the health of crop plants. Previous investigations revealed that a group of strains represented a distinct ecotype related to B. amyloliquefaciens; however, the exact taxonomic position of this group remains elusive (Reva et al., 2004). In the present study, we demonstrated the ability of a group of Bacillus strains closely related to strain FZB42T to colonize Arabidopsis roots. On the basis of their phenotypic traits, the strains were similar to Bacillus amyloliquefaciens DSM 7T but differed considerably from this type strain in the DNA sequences of genes encoding 16S rRNA, gyrase subunit A (gyrA) and histidine kinase (cheA). Phylogenetic analysis performed with partial 16S rRNA, gyrA and cheA gene sequences revealed that the plant-associated strains of the genus Bacillus, including strain FZB42T, formed a lineage, which could be distinguished from the cluster of strains closely related to B. amyloliquefaciens DSM 7T. DNA–DNA hybridizations (DDH) performed with genomic DNA from strains DSM 7T and FZB42T yielded relatedness values of 63.7–71.2 %. Several methods of genomic analysis, such as direct whole-genome comparison, digital DDH and microarray-based comparative genomichybridization (M-CGH) were used as complementary tests. The group of plant-associated strains could be distinguished from strain DSM 7T and the type strain of B. subtilis by differences in the potential to synthesize non-ribosomal lipopeptides and polyketides. Based on the differences found in the marker gene sequences and the whole genomes of these strains, we propose two novel subspecies, designated B. amyloliquefaciens subsp. plantarum subsp. nov., with the type strain FZB42T ( = DSM 23117T = BGSC 10A6T), and B. amyloliquefaciens subsp. amyloliquefaciens subsp. nov., with the type strain DSM 7T( = ATCC 23350T = Fukumoto Strain FT), for plant-associated and non-plant-associated representatives, respecitvely. This is in agreement with results of DDH and M-CGH tests and the MALDI-TOF MS of cellular components, all of which suggested that the ecovars represent two different subspecies.

Funder

Chinese-German collaboration program by the German Ministry for Education and Research

Genome Research on Bacteria

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3