Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic

Author:

Sánchez-Porro Cristina1,Kaur Bhavleen2,Mann Henrietta3,Ventosa Antonio1

Affiliation:

1. Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain

2. Department of Education, Ontario Science Centre, Toronto, ON M3C 1T3, Canada

3. Department of Civil Engineering, Dalhousie University, Halifax, NS B3J 2X4, Canada

Abstract

A Gram-negative, heterotrophic, aerobic, non-endospore-forming, peritrichously flagellated and motile bacterial strain, designated BH1T, was isolated from samples of rusticles, which are formed in part by a consortium of micro-organisms, collected from the RMS Titanic wreck site. The strain grew optimally at 30–37 °C, pH 7.0–7.5 and in the presence of 2–8 % (w/v) NaCl. We carried out a polyphasic taxonomic study in order to characterize the strain in detail. Phylogenetic analyses based on 16S rRNA gene sequence comparison indicated that strain BH1T clustered within the branch consisting of species of Halomonas. The most closely related type strains were Halomonas neptunia (98.6 % 16S rRNA sequence similarity), Halomonas variabilis (98.4 %), Halomonas boliviensis (98.3 %) and Halomonas sulfidaeris (97.5 %). Other closely related species were Halomonas alkaliphila (96.5 % sequence similarity), Halomonas hydrothermalis (96.3 %), Halomonas gomseomensis (96.3 %), Halomonas venusta (96.3 %) and Halomonas meridiana (96.2 %). The major fatty acids of strain BH1T were C18 : 1 ω7c (36.3 %), C16 : 0 (18.4 %) and C19 : 0 cyclo ω8c (17.9 %). The DNA G+C content was 60.0 mol% (T m). Ubiquinone 9 (Q-9) was the major lipoquinone. The phenotypic features, fatty acid profile and DNA G+C content further supported the placement of strain BH1T in the genus Halomonas. DNA–DNA hybridization values between strain BH1T and H. neptunia CECT 5815T, H. variabilis DSM 3051T, H. boliviensis DSM 15516T and H. sulfidaeris CECT 5817T were 19, 17, 30 and 29 %, respectively, supporting the differential taxonomic status of BH1T. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain BH1T is considered to represent a novel species, for which the name Halomonas titanicae sp. nov. is proposed. The type strain is BH1T (=ATCC BAA-1257T =CECT 7585T =JCM 16411T =LMG 25388T).

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3