An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines

Author:

Hickman Danielle1,Hossain Md Jaber1,Song Haichen1,Araya Yonas1,Solórzano Alicia1,Perez Daniel R.1

Affiliation:

1. Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742-3711, USA

Abstract

The unprecedented emergence in Asia of multiple avian influenza virus (AIV) subtypes with a broad host range poses a major challenge in the design of vaccination strategies that are both effective and available in a timely manner. The present study focused on the protective effects of a genetically modified AIV as a source for the preparation of vaccines for epidemic and pandemic influenza. It has previously been demonstrated that a live attenuated AIV based on the internal backbone of influenza A/Guinea fowl/Hong Kong/WF10/99 (H9N2), called WF10att, is effective at protecting poultry species against low- and high-pathogenicity influenza strains. More importantly, this live attenuated virus provided effective protection when administered in ovo. In order to characterize the WF10att backbone further for use in epidemic and pandemic influenza vaccines, this study evaluated its protective effects in mice. Intranasal inoculation of modified attenuated viruses in mice provided adequate protective immunity against homologous lethal challenges with both the wild-type influenza A/WSN/33 (H1N1) and A/Vietnam/1203/04 (H5N1) viruses. Adequate heterotypic immunity was also observed in mice vaccinated with modified attenuated viruses carrying H7N2 surface proteins. The results presented in this report suggest that the internal genes of a genetically modified AIV confer similar protection in a mouse model and thus could be used as a master donor strain for the generation of live attenuated vaccines for epidemic and pandemic influenza.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3