Affiliation:
1. Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
2. Laboratory of Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
Abstract
Baculoviruses encode inhibitors of apoptosis (IAPs), which are classified into five groups, IAP1–5, based on their sequence homology. Most of the baculovirus IAPs with anti-apoptotic functions belong to the IAP3 group, with certain exceptions. The functional roles of IAPs from other groups during virus infection have not been well established. We have previously shown that Hyphantria cunea multiple nucleopolyhedrovirus (HycuMNPV) encodes three iap genes, hycu-iap1, hycu-iap2 and hycu-iap3, and that only Hycu-IAP3 has anti-apoptotic activity against actinomycin D-induced apoptosis of Spodoptera frugiperda
Sf9 cells. In the present study, we demonstrate that transient expression of Hycu-IAP1 is capable of inducing apoptosis and/or stimulating caspase-3-like protease activity in various lepidopteran and dipteran cell lines. Transient-expression assay analysis also demonstrates that not only Hycu-IAP1 but also IAP1s from Autographa californica MNPV, Bombyx mori NPV and Orgyia pseudotsugata MNPV (OpMNPV) are capable of inducing apoptosis, and that apoptosis induced by Hycu-IAP1 is precluded by the functional anti-apoptotic baculovirus protein Hycu-IAP3. In HycuMNPV-infected Spilosoma imparilis (SpIm) cells and OpMNPV-infected Ld652Y cells, caspase-3-like protease activity is markedly stimulated during the late stages of infection, and the caspase-3-like protease activity stimulated in HycuMNPV-infected SpIm cells is repressed by RNA interference-mediated silencing of hycu-iap1. In addition, initiator caspase Bm-Dronc, the B. mori homologue of Dronc, is cleaved upon transfection of BM-N cells with a plasmid expressing Hycu-IAP1. These results provide the first evidence that baculovirus IAP1s act to induce caspase-dependent apoptosis, possibly by replacing the cellular IAP1 that prevents Dronc activation.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献