Baculovirus IAP1 induces caspase-dependent apoptosis in insect cells

Author:

Ikeda Motoko1,Yamada Hayato1,Ito Hiroyuki2,Kobayashi Michihiro2

Affiliation:

1. Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan

2. Laboratory of Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan

Abstract

Baculoviruses encode inhibitors of apoptosis (IAPs), which are classified into five groups, IAP1–5, based on their sequence homology. Most of the baculovirus IAPs with anti-apoptotic functions belong to the IAP3 group, with certain exceptions. The functional roles of IAPs from other groups during virus infection have not been well established. We have previously shown that Hyphantria cunea multiple nucleopolyhedrovirus (HycuMNPV) encodes three iap genes, hycu-iap1, hycu-iap2 and hycu-iap3, and that only Hycu-IAP3 has anti-apoptotic activity against actinomycin D-induced apoptosis of Spodoptera frugiperda Sf9 cells. In the present study, we demonstrate that transient expression of Hycu-IAP1 is capable of inducing apoptosis and/or stimulating caspase-3-like protease activity in various lepidopteran and dipteran cell lines. Transient-expression assay analysis also demonstrates that not only Hycu-IAP1 but also IAP1s from Autographa californica MNPV, Bombyx mori NPV and Orgyia pseudotsugata MNPV (OpMNPV) are capable of inducing apoptosis, and that apoptosis induced by Hycu-IAP1 is precluded by the functional anti-apoptotic baculovirus protein Hycu-IAP3. In HycuMNPV-infected Spilosoma imparilis (SpIm) cells and OpMNPV-infected Ld652Y cells, caspase-3-like protease activity is markedly stimulated during the late stages of infection, and the caspase-3-like protease activity stimulated in HycuMNPV-infected SpIm cells is repressed by RNA interference-mediated silencing of hycu-iap1. In addition, initiator caspase Bm-Dronc, the B. mori homologue of Dronc, is cleaved upon transfection of BM-N cells with a plasmid expressing Hycu-IAP1. These results provide the first evidence that baculovirus IAP1s act to induce caspase-dependent apoptosis, possibly by replacing the cellular IAP1 that prevents Dronc activation.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3