Structural modelling and mutagenesis of human cytomegalovirus alkaline nuclease UL98

Author:

Kuchta Alison L.1,Parikh Hardik2,Zhu Yali3,Kellogg Glen E.2,Parris Deborah S.3,McVoy Michael A.1

Affiliation:

1. Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA

2. Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA

3. Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA

Abstract

Human cytomegalovirus encodes an alkaline nuclease, UL98, that is highly conserved among herpesviruses and has both endonuclease (endo) and exonuclease (exo) activities. This protein is thought to be important for viral replication and therefore represents a potential target for antiviral development; however, little is known about its structure or role in viral replication. Comparative structural modelling was used to build a model of UL98 based on the known structure of shutoff and exonuclease protein from Kaposi’s sarcoma-associated herpesvirus. The model predicts that UL98 residues D254, E278 and K280 represent the critical aspartic acid, glutamic acid and lysine active-site residues, respectively, while R164 and S252 correspond to residues proposed to bind the 5′ phosphate of the DNA substrate. UL98 with an amino-terminal hexahistidine tag was expressed inEscherichia coli, purified by affinity chromatography and confirmed to have exo and endo activities. Amino acid substitutions D254A, E278A, K280A and S252A virtually eliminated exo and endo activities, whereas R164A retained full endo activity but only 10 % of the exo activity compared with the wild-type enzyme. A mutant virus lacking UL98 was viable but severely attenuated for replication, while one expressing UL98(R164A) replicated normally. These results confirm the utility of the model in representing the active-site region of UL98 and suggest a mechanism for the differentiation of endonuclease and exonuclease activities. These findings could facilitate the exploration of the roles of alkaline nucleases in herpesvirus replication and the rational design of inhibitors that target their enzymic activities.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3