Human T-cell leukemia viruses are highly unstable over a wide range of temperatures

Author:

Shinagawa Masahiko12,Jinno-Oue Atsushi2,Shimizu Nobuaki2,Roy Bibhuti Bhusan2,Shimizu Akira2,Hoque Sk. Ariful2,Hoshino Hiroo12

Affiliation:

1. 21st Century COE Program, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan

2. Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan

Abstract

The biological properties of human T-cell leukemia virus type I (HTLV-I) and HTLV type II (HTLV-II) are not well elucidated as cell-free viruses. We established new assay systems to detect the infectivity of cell-free HTLVs and examined the stability of cell-free HTLVs at different temperatures. HTLVs lost infectivity more rapidly than did bovine leukemia virus (BLV), which is genetically related to HTLVs. The half-lives of three HTLV-I strains (two cosmopolitan strains and one Melanesian strain) at 37 °C were approximately 0.6 h, whereas the half-life of a BLV strain was 8.5 h. HTLV-I rapidly lost infectivity unexpectedly at 0 and 4 °C. We examined the stability of vesicular stomatitis virus pseudotypes with HTLV-I, HTLV-II or BLV Env proteins, and the Env proteins of HTLVs were found to be more unstable at 4 and 25 °C than the Env proteins of the BLV. Over the course of the viral life cycle, heat treatment inhibited HTLV-I infection at the phase of attachment to the host cells, and inhibition was more marked upon entry into the cells. The HTLV-I Env surface (SU) protein (gp46) was easily released from virions during incubation at 37 °C. However, this release was inhibited by pre-treatment of the virions with N-ethylmaleimide, suggesting that the inter-subunit bond between gp46 SU and gp21 transmembrane (TM) proteins is rearranged by disulfide bond isomerization. HTLVs are highly unstable over a wide range of temperatures because the disulfide bonds between the SU and TM proteins are labile.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3