Infection of human alveolar macrophages by human coronavirus strain 229E

Author:

Funk C. Joel1,Wang Jieru1,Ito Yoko1,Travanty Emily A.1,Voelker Dennis R.1,Holmes Kathryn V.2,Mason Robert J.1

Affiliation:

1. National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA

2. Department of Microbiology, University of Colorado Denver, Aurora, CO 80045, USA

Abstract

Human coronavirus strain 229E (HCoV-229E) commonly causes upper respiratory tract infections. However, lower respiratory tract infections can occur in some individuals, indicating that cells in the distal lung are susceptible to HCoV-229E. This study determined the virus susceptibility of primary cultures of human alveolar epithelial cells and alveolar macrophages (AMs). Fluorescent antibody staining indicated that HCoV-229E could readily infect AMs, but no evidence was found for infection in differentiated alveolar epithelial type II cells and only a very low level of infection in type II cells transitioning to the type I-like cell phenotype. However, a human bronchial epithelial cell line (16HBE) was readily infected. The innate immune response of AMs to HCoV-229E infection was evaluated for cytokine production and interferon (IFN) gene expression. AMs secreted significant amounts of tumour necrosis factor alpha (TNF-α), regulated on activation normal T-cell expressed and secreted (RANTES/CCL5) and macrophage inflammatory protein 1β (MIP-1β/CCL4) in response to HCoV-229E infection, but these cells exhibited no detectable increase in IFN-β or interleukin-29 in mRNA levels. AMs from smokers had reduced secretion of TNF-α compared with non-smokers in response to HCoV-229E infection. Surfactant protein A (SP-A) and SP-D are part of the innate immune system in the distal lung. Both surfactant proteins bound to HCoV-229E, and pre-treatment of HCoV-229E with SP-A or SP-D inhibited infection of 16HBE cells. In contrast, there was a modest reduction in infection in AMs by SP-A, but not by SP-D. In summary, AMs are an important target for HCoV-229E, and they can mount a pro-inflammatory innate immune response to infection.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3