Affiliation:
1. State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
3. Microbiome Research Center, Moon (Guangzhou) Biotech Co., Ltd., Guangzhou 510700, PR China
Abstract
Two Gram-stain-positive, aerobic, oxidase- and catalase-negative, non-motile, and short rod-shaped actinomycetes, named SYSU T00b441T and SYSU T00b490, were isolated from tidal flat sediment located in Guangdong province, PR China. The 16S rRNA gene sequence similarity, average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between SYSU T00b441T and SYSU T00b490 were 99.3, 99.5 and 97.1 %, respectively. Strains SYSU T00b441T and SYSU T00b490 exhibited the highest 16S rRNA gene sequence similarities to Actinotalea ferrariae CF 5-4T (97.1 %/98.2 %), with ANI values of 74.01/73.88 % and dDDH values of 20.5/20.4 %. In the phylogenomic tree, the two isolates were affiliated with the genus Actinotalea. The genomes of strains SYSU T00b441T and SYSU T00b490 were 3.31 and 3.34 Mb, and both had DNA G+C contents of 72.8 mol%, coding 3077 and 3085 CDSs, three and three rRNA genes, and 53 and 51 tRNAs, respectively. Growth occurred at 15–40 °C (optimum, 28–30 °C), pH 4.0–10.0 (optimum, 7.0) and in the presence of 0–7 % (w/v) NaCl (optimum, 3 %). The major fatty acids (>10 %) of strains SYSU T00b441T and SYSU T00b490 were anteiso-C15 : 0 and C16 : 0. The major respiratory quinone was identified as MK-10(H4). The polar lipids of strains SYSU T00b441T and SYSU T00b490 were diphosphatidyl glycerol, phosphatidylglycerol, phosphoglycolipid, phosphatidyl ethanolamine, two phosphatidylinositol mannosides, two glycolipids and two phospholipids. Based on these data, the two strains (SYSU T00b441T and SYSU T00b490) represent a novel species of the genus Actinotalea, for which the name Actinotalea lenta sp. nov is proposed. The type strain is SYSU T00b441T (=GDMCC 1.3827T=KCTC 49943T).
Funder
Key-Area Research and Development Program of Guangdong Province
National Science and Technology Fundamental Resources Investigation Program of China
National Natural Science Foundation of China