Haloflavibacter putidus gen. nov., sp. nov., isolated from coastal seawater

Author:

Feng Xi1,Wang Yi-Ran2,Zou Qi-Hang1,Zhang Jin-Yu1ORCID,Du Zong-Jun1ORCID

Affiliation:

1. Marine College, Shandong University, Weihai, Shandong, 264209, PR China

2. College of Biological Sciences, University of California Davis, Davis 95616, CA, USA

Abstract

A Gram-stain-negative, aerobic, gliding, rod-shaped (0.2–0.5×1.0-13.0 µm) and yellow-pigmented bacterium, designated PLHSN227T, was isolated from seawater collected near the coast of Yantai, PR China. PLHSN227T was found to grow at 15–37 °C (optimum, 28–30 °C) and pH 6.0–8.5 (optimum, 6.5–7.5) in the presence of 2–14 % (w/v) NaCl (optimum, 5.0 %). Phylogenetic analysis of the 16S rRNA gene sequences revealed that PLHSN227T represented a member of the family Flavobacteriaceae and exhibited the highest sequence similarity (94.6 %) to the type strain Salegentibacter holothuriorum NBRC 100249T. The chemotaxonomic analysis revealed that the sole respiratory quinone was menaquinone 6 (MK-6) and the major fatty acids included C19 : 0ω8c cyclo, iso-C15 : 0, anteiso-C15 : 0, C18 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The major polar lipids included phosphatidylethanolamine, one unidentified aminolipid and two unidentified lipids. The DNA G+C content of PLHSN227T was 35.6 mol%. PLHSN227T showed the highest average amino acid identity value of 67.2 %, the average nucleotide identity value of 75.6 and 14.5 % digital DNA–DNA hybridization identity with Mesonia algae DSM 15361T. According to the phylogenetic data, PLHSN227T formed a distinct clade in the phylogenetic tree. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it is considered that PLHSN227T represents a novel genus within the family Flavobacteriaceae , for which the name Haloflavibacter putidus gen. nov., sp. nov. is proposed. The type strain is PLHSN227T (=KCTC 72159T=MCCC 1H00371T).

Funder

the National Natural Science Foundation of China

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3