Rhabdothermincola salaria sp. nov., a novel actinobacterium isolated from a saline lake sediment

Author:

Gao Lei12,Fang Bao-Zhu2,Liu Yong-Hong2,Jiao Jian-Yu3,Li Meng-Meng3,Antunes André4,Li Wen-Jun23ORCID

Affiliation:

1. University of Chinese Academy of Sciences, Beijing 100049, PR China

2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China

3. State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China

4. State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, PR China

Abstract

An actinobacterium, designated strain EGI L10124T, was isolated from saline lake sediment collected in Xinjiang province, PR China. The taxonomic position of the isolate was determined based on polyphasic taxonomic and phylogenomic analyses. Phylogenetic analysis and 16S rRNA gene sequence similarities indicated that strain EGI L10124T formed a distinct clade with Rhabdothermincola sediminis SYSU G02662T, with a shared sequence identity of 95.2 %. The novel isolate could be distinguished from species in the genus Rhabdothermincola by its distinct phenotypic, physiological and genotypic characteristics. The cells of strain EGI L10124T were aerobic, Gram-stain-positive and short rod-shaped. Optimal growth conditions of strain EGI L10124T on marine agar 2216 were registered at pH 8.0 at 37 °C. In addition, meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The major respiratory quinone was MK-9 (H8), while the major fatty acids were iso-C16 : 0, C17 : 0 and C16 : 0. The polar lipids included diphosphatidylglycerol, phosphatidylinositol mannoside and phosphatidylinositol. Based on the genome sequence of strain EGI L10124T, it appears that the G+C content of the novel isolate was 71.8 mol%. According to our data, strain EGI L10124T represents a new species of the genus Rhabdothermincola , for which the name Rhabdothermincola salaria sp. nov. is proposed. The type strain of the proposed novel isolate is EGI L10124T (=CGMCC 1.19113T=KCTC 49679T).

Funder

National Science and Technology Fundamental Resources Investigation Program of China

Xinjiang Uygur Autonomous Region regional coordinated innovation project

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Reference50 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3