Paradesulfitobacterium ferrireducens gen. nov., sp. nov., a Fe(III)-reducing bacterium from petroleum-contaminated soil and reclassification of Desulfitobacterium aromaticivorans as Paradesulfitobacterium aromaticivorans comb. nov.

Author:

Li Yanling1,Yang Guiqin1,Yao Sijie1,Zhuang Li1ORCID

Affiliation:

1. Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China

Abstract

A strictly anaerobic bacterium, strain PLL0T, was isolated from petroleum-contaminated soil sampled in Gansu Province, PR China. Cells were rods, non-motile and Gram-stain-positive. The strain grew at 25–37 °C (optimum, 30 °C) in the presence of 0–3 % (w/v) NaCl (optimum, 2 %). Strain PLL0T was able to reduce ferrihydrite, Fe(III) citrate and thiosulphate. The 16S rRNA gene analysis revealed that this strain clustered with the genus Desulfitobacterium , and showed highest similarity to Desulfitobacterium aromaticivorans UKTLT (95.4 %) followed by Desulfitobacterium chlororespirans Co23T (93.9 %). However, strains PLL0T and UKTLT showed no more than 94.0 % similarity to other species of the genus Desulfitobacterium , and formed an independent group in the phylogenetic tree. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain PLL0T and Desulfitobacterium species (except for D. aromaticivorans ) were 67.4–68.5 % and 12.6–12.7 %, respectively, which are far below the threshold for delineation of a new species. Based on ANI, dDDH, average amino acid identity, phylogenetic analysis and physiologic differences from the previously described taxa, we suggest that strain PLL0T represents a novel species of a novel genus, for which the name Paradesulfitobacterium ferrireducens gen. nov. sp. nov. is proposed. The type strain is PLL0T (=MCCC 1K05549=KCTC 25248). We also propose the reclassification of D. aromaticivorans as Paradesulfitobacterium aromaticivorans comb. nov.

Funder

national natural science foundation of china

natural science foundation of guangdong province

science and technology program of guangzhou

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3