Hydrogenimonas cancrithermarum sp. nov., a hydrogen- and thiosulfate-oxidizing mesophilic chemolithoautotroph isolated from diffuse-flow fluids on the East Pacific Rise, and an emended description of the genus Hydrogenimonas

Author:

Mino Sayaka1ORCID,Fukazawa So1,Tsuchiya Jiro1,McNichol Jesse C.23,Sievert Stefan M.3,Yamaki Shogo4,Ando Yasuhiro5,Sawabe Tomoo1

Affiliation:

1. Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan

2. Department of Biology, St. Francis Xavier University, NS, Canada

3. Biology Department, Woods Hole Oceanographic Institution, MA, USA

4. Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan

5. Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan

Abstract

A novel mesophilic, hydrogen- and thiosulfate-oxidizing bacterium, strain ISO32T, was isolated from diffuse-flow hydrothermal fluids from the Crab Spa vent on the East Pacific Rise. Cells of ISO32T were rods, being motile by means of a single polar flagellum. The isolate grew at a temperature range between 30 and 55 °C (optimum, 43 °C), at a pH range between 5.3 and 7.6 (optimum, pH 5.8) and in the presence of 2.0–4.0 % NaCl (optimum, 2.5 %). The isolate was able to grow chemolithoautotrophically with molecular hydrogen, thiosulfate or elemental sulfur as the sole electron donor. Thiosulfate, elemental sulfur, nitrate and molecular oxygen were each used as a sole electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences placed ISO32T in the genus Hydrogenimonas of the class Epsilonproteobacteria , with Hydrogenimonas thermophila EP1-55–1 %T as its closest relative (95.95 % similarity). On the basis of the phylogenetic, physiological and genomic characteristics, it is proposed that the organism represents a novel species within the genus Hydrogenimonas , Hydrogenimonas cancrithermarum sp. nov. The type strain is ISO32T (=JCM 39185T =KCTC 25252T). Furthermore, the genomic properties of members of the genus Hydrogenimonas are distinguished from those of members of other thermophilic genera in the orders Campylobacterales ( Nitratiruptor and Nitrosophilus ) and Nautiliales ( Caminibacter , Nautilia and Lebetimonas ), with larger genome sizes and lower 16S rRNA G+C content values. Comprehensive metabolic comparisons based on genomes revealed that genes responsible for the Pta–AckA pathway were observed exclusively in members of mesophilic genera in the order Campylobacterales and of the genus Hydrogenimonas . Our results indicate that the genus Hydrogenimonas contributes to elucidating the evolutionary history of Epsilonproteobacteria in terms of metabolism and transition from a thermophilic to a mesophilic lifestyle.

Funder

Japan Society for the Promotion of Science

JSPS Research Fellowship for Young Scientists

U.S. National Science Foundation grant

the WHOI Investment in Science Fund

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3