Paenibacillus artemisiicola sp. nov. and Paenibacillus lignilyticus sp. nov., two new endophytic bacterial species isolated from plant roots

Author:

Ham You Ju1,Jeong Ji Won1,Lee Dong Hyeon1,Kim Seung Bum1ORCID

Affiliation:

1. Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea

Abstract

Two Gram-positive, endospore-forming, rod-shaped bacterial strains designated MWE-103T and DLE-14T were isolated from plant roots. The 16S rRNA gene sequence analysis indicated that strain MWE-103T was closely related to Paenibaillus sacheonensis SY01T with a sequence similarity of 97.82 %, and strain DLE-14T to Paenibacillus rhizoryzae IZS3-5T with 99.09 % similarity. The orthologous average nucleotide identity and digital DNA–DNA hybridization values using whole genome data indicated that strains MWE-103T and DLE-14T could be readily distinguished from the mostly related species. Both strains grew at mesophilic temperature ranges, and grew best at pH 6 and in the absence of NaCl. The major fatty acid in both strains was anteiso-C15 : 0, but their relative proportions differed. The predominant quinone of both strains was menaquinone 7, the cell-wall diamino acid was meso-diaminopimelic acid, and the diagnostic polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol, which were consistent with those of related species. Amylase and cellulase activities were positive for both strains. Strain DLE-14T exhibited the potential for lignin degradation. The DNA G+C contents of strain MWE-103T and DLE-14T were 60.9 and 50.8 mol% respectively. The genomes of the two strains revealed potential plant-growth-promoting characteristics such as nitrogen fixation, siderophore production and phosphate solubilization. Based on phylogenetic and phenotypic evidence, strains MWE-103T and DLE-14T should each be recognized as a novel species of Paenibacillus , for which the names Paenibacillus artemisiicola sp. nov. (type strain: MWE-103T=KCTC 43287T=JCM 34503T) and Paenibacillus lignilyticus sp. nov. (type strain: DLE-14T=KCTC 43288T=JCM 34504T) are proposed.

Funder

National Institute of Biological Resources

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Paenibacillus baimaensis sp. nov., a bacterium isolated from mountain soil in the habitat of Rhinopithecus bieti;International Journal of Systematic and Evolutionary Microbiology;2024-02-09

2. Paenibacillus spongiae sp. nov. isolated from deep-water marine sponge Theonella swinhoei;International Journal of Systematic and Evolutionary Microbiology;2023-11-01

3. Paenibacillus mangrovi sp. nov., a novel endophytic bacterium isolated from bark of Kandelia candel;International Journal of Systematic and Evolutionary Microbiology;2023-03-15

4. Paenibacillus oleatilyticus sp. nov., isolated from soil;Archives of Microbiology;2022-07-22

5. Taxonomic Abstract for the species.;The NamesforLife Abstracts;2003-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3