Thermomonas paludicola sp. nov., isolated from a lotus wetland

Author:

Kim Mirae1,Park Miri S.1,Kang Ilnam1,Cho Jang-Cheon1ORCID

Affiliation:

1. Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea

Abstract

A Gram-stain-negative, aerobic, rod-shaped and motile bacterium, designated IMCC34681T, was isolated from a lotus wetland in the Republic of Korea. Cellular growth occurred at 10–37 °C (optimum, 30 °C), pH 6–9 (optimum, pH 7) and with 0–2 % (w/v) NaCl (optimum, 0.5 % NaCl). The results of 16S rRNA gene sequence analysis indicated that IMCC34681T represented a member of the genus Thermomonas , sharing 95.3–96.9 % similarities with type strains of species of the genus. The whole-genome sequence of IMCC34681T was 2.72 Mbp in size with 66.2 % DNA G+C content. The IMCC34681T genome shared the highest average nucleotide identity (ANI) value, 82.8 %, with that of Thermomonas brevis KACC 16975T among species of the genus Thermomonas , indicating that the strain represents a novel genomic species. The major respiratory quinone of the strain was ubiquinone-8 (Q-8) and the predominant cellular fatty acids were iso-C15 : 0 (25.7 %) and iso-C14 : 0 (20.8 %). The strain harboured diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid as major fatty polar lipids. On the basis of the phylogenetic, phenotypic, chemotaxonomic and genomic characteristics, IMCC34681T was assigned to the genus Thermomonas as the type strain of a novel species, for which the name Thermomonas paludicola sp. nov. is proposed. The type strain is IMCC34681T (=KACC 21793T=NBRC 114635T).

Funder

Nakdonggang National Institute of Biological Resources

Inha University

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermomonas mangrovi sp. nov., isolated from soil of a mangrove nature reserve;International Journal of Systematic and Evolutionary Microbiology;2023-05-31

2. A novel strictly anaerobic sulfate-reducing diazotrophic bacterium Fundidesulfovibrio terrae sp. nov., isolated from paddy soil;International Journal of Systematic and Evolutionary Microbiology;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3