Tamlana laminarinivorans sp. nov. and Tamlana sargassicola sp. nov., two novel species isolated from Sargassum, show genomic and physiological adaptations for a Sargassum-associated lifestyle

Author:

Li Jin1,Liang Yumei1,He Zhixiao1,An Lu1,Liu Yongjin1,Zhong Mingqi1,Hu Zhong12

Affiliation:

1. Department of Biology, College of Science, Shantou University, Shantou, 515063, PR China

2. Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China

Abstract

The genus Tamlana from the Bacteroidota currently includes six validated species. Two strains designated PT2-4T and 62-3T were isolated from Sargassum abundant at the Pingtan island coast in the Fujian Province of China. 16S rRNA gene sequence analysis showed that the closest described relative of strains PT2-4T and 62-3T is Tamlana sedimentorum JCM 19808T with 98.40 and 97.98% sequence similarity, respectively. The 16S rRNA gene sequence similarity between strain PT2-4T and strain 62-3T was 98.68 %. Furthermore, the highest average nucleotide identity values were 87.34 and 88.97 % for strains PT2-4T and 62-3T, respectively. The highest DNA–DNA hybridization (DDH) value of strain PT2-4T was 35.2 % with strain 62-3T, while the DDH value of strain 62-3T was 37.7 % with T. sedimentorum JCM 19808T. Growth of strains PT2-4T and 62-3T occurs at 15–40 °C (optimum, 30 °C) with 0–4 % (w/v) NaCl (optimum 0–1 %). Strains PT2-4T and 62-3T can grow from pH 5.0 to 10.0 (optimum, pH 7.0). The major fatty acids of strains PT2-4T and 62-3T are iso-C15 : 0 and iso G-C15 : 1. MK-6 is the sole respiratory quinone. Genomic and physiological analyses of strains PT2-4T and 62-3T showed corresponding adaptive features. Significant adaptation to the growth environment of macroalgae includes the degradation of brown algae-derived diverse polysaccharides (alginate, laminarin and fucoidan). Notably, strain PT2-4T can utilize laminarin, fucoidan and alginate via specific carbohydrate-active enzymes encoded in polysaccharide utilization loci, rarely described for the genus Tamlana to date. Based on their distinct physiological characteristics and the traits of utilizing polysaccharides from Sargassum, strains PT2-4T and 62-3T are suggested to be classified into two novel species, Tamlana laminarinivorans sp. nov. and Tamlana sargassicola sp. nov. (type strain PT2-4T=MCCC 1K04427T=KCTC 92183T and type strain 62-3T=MCCC 1K04421T=KCTC 92182T).

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Science and Technology Planning Project of Shantou City

Innovation Team Project of Guangdong Normal University

Major Project of Talent Team Introduction for Guangdong Provincial Laboratory of Southern Marine Science and Engineering

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3