Clostridium chrysemydis sp. nov., isolated from the faecal material of a painted turtle

Author:

Hunter Kathryn C.1,Lawson Paul A.2,Dowd Scot E.3,McLaughlin R. W.1ORCID

Affiliation:

1. General Studies, Gateway Technical College, Kenosha WI 53144, USA

2. Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK 73019, USA

3. MR DNA (Molecular Research LP), Shallowater, TX, USA

Abstract

A strict anaerobic, Gram-stain-positive rod-shaped bacterium, designated PTT, was isolated from the faecal material of a painted turtle (Chrysemys picta). Based on a comparative 16S rRNA gene sequence analysis, the isolate was assigned to Clostridium sensu stricto with the highest sequence similarities to Clostridium moniliforme (97.4 %), Clostridium sardiniense (97.2 %) and the misclassified organism Eubacterium multiforme (97.1 %). The predominant cellular fatty acids of strain PTT were C14 : 0, C16 : 0 and an unidentified product with an equivalent chain length of 14.969. The G+C content determined from the genome was 28.8 mol%. The fermentation end products from glucose were acetate and butyrate with no alcohols detected and trace amounts of CO2 and H2 also detected; no respiratory quinones were detected. Based on biochemical, phylogenetic, genotypic and chemotaxonomic criteria, the isolate represents a novel species of the genus Clostridium for which the name Clostridium chrysemydis sp. nov. is proposed. The type strain is strain PTT (=CCUG 74180T=ATCC TSD-219T).

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Reference41 articles.

1. The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations;Collins;Int J Syst Evol Microbiol,1994

2. A proposal for a standardized bacterial taxonomy based on genome phylogeny;Parks;BioRxiv,2018

3. Revisiting the Evolution and Taxonomy of Clostridia, a Phylogenomic Update

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3