Halomicrococcus gelatinilyticus sp. nov. and Halosimplex aquaticum sp. nov., halophilic archaea isolated from saline soil and an inland solar saltern

Author:

Hu Yao1,Ma Xue1,Li Xin-Xin1,Tan Shun1,Cheng Mu1,Hou Jing1,Cui Heng-Lin1ORCID

Affiliation:

1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China

Abstract

Two extremely halophilic archaeal strains, GSLN9T and XZYJT29T, were isolated from the saline soil in different regions of western China. Both strains GSLN9T and XZYJT29T have two 16S rRNA genes with similarities of 95.1 and 94.8 %, respectively. Strain GSLN9T was mostly related to the genus Halomicrococcus based on 16S rRNA (showing 91.0–96.0 % identities) and rpoB′ genes (showing 92.0 % identity). Strain XZYJT29T showed 92.1–97.6 % (16S rRNA gene) and 91.4–93.1 % (rpoB′ gene) sequence similarities to its relatives in the genus Halosimplex , respectively. The polar lipid profile of strain GSLN9T included phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulphate (PGS), sulphated mannosyl glucosyl diether (S-DGD-1) and sulphated galactosyl mannosyl glucosyl diether (S-TGD-1), mostly similar to that of Halomicrococcus hydrotolerans H22T. PA, PG, PGP-Me, S-DGD-1 (S-DGD-PA), S2-DGD, S-TGD-1 and an unidentified glycolipid were detected in strain XZYJT29T; this polar lipid composition is similar to those of members of the genus Halosimplex . The average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity values between these two strains and their relatives of the genera Halomicrococcus and Halosimplex were no more than 82, 27 and 80 %, respectively, much lower than the thresholds for species demarcation. Other phenotypic characterization results indicated that strains GSLN9T and XZYJT29T can be differentiated from the current species of the genera Halomicrococcus and Halosimplex , respectively. These results revealed that strains GSLN9T (=CGMCC 1.15215T=JCM 30842T) and XZYJT29T (=CGMCC 1.15828T=JCM 31853T) represent novel species of Halomicrococcus and Halosimplex , for which the names Halomicrococcus gelatinilyticus sp. nov. and Halosimplex aquaticum sp. nov. are proposed.

Funder

National Natural Science Foundation of China

Publisher

Microbiology Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3