Halobacillus salinarum sp. nov., Halobacillus shinanisalinarum sp. nov. and Halobacillus amylolyticus sp. nov., isolated from saltern soil

Author:

Kim Yiseul1,Kim Seunghwan1,Kwon Soon-Wo1,Weon Hang-Yeon1,Naito Hanako2,Asano Tomomi2,Hamada Moriyuki2,Heo Jun1ORCID

Affiliation:

1. Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea

2. NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan

Abstract

Three bacterial strains, designated SSBR10-3T, SSTM10-2T and SSHM10-5T, were isolated from saltern soil sampled in Jeollanam-do, Republic of Korea. Cells were aerobic, Gram-stain-positive, flagellated and rod-shaped. The strains grew optimally at 28°C and at pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains SSBR10-3T, SSTM10-2T and SSHM10-5T were placed within the genus Halobacillus , showing the highest similarity to Halobacillus alkaliphilus FP5T (98.6 %), ‘Halobacillus ihumii’ Marseille-Q1234T (98.5 %) and Halobacillus locisalis MSS-155T (98.6 %), respectively. The genomic similarity values between strains SSBR10-3T, SSTM10-2T and SSHM10-5T and their related species were 17.6–22.6 % for digital DNA–DNA hybridization (dDDH) and 69.6–78.5 % for orthologous average nucleotide identity (OrthoANI), which were lower than the thresholds recommended for species delineation. The dDDH and OrthoANI values among the three strains were below 38.3 and 89.4 %, respectively. Besides the differences in genomic features, strains SSBR10-3T, SSTM10-2T and SSHM10-5T were distinct from each other and from members of the genus in terms of phenotypic traits related to substrate assimilation. The cell-wall peptidoglycan contained meso-diaminopimelic acid, the major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, and the predominant menaquinone was MK-7 for all three strains. Diphosphatidylglycerol, phosphatidylglycerol and an unidentified phospholipid were present in their polar lipid profiles. Based on a polyphasic approach incorporating genomic data, strains SSBR10-3T, SSTM10-2T and SSHM10-5T represent novel species, for which the names Halobacillus salinarum sp. nov. (SSBR10-3T=DSM 114353T=KACC 21935T=NBRC 115504T), Halobacillus shinanisalinarum sp. nov. (SSTM10-2T=DSM 114354T=KACC 21936T=NBRC 115505T) and Halobacillus amylolyticus sp. nov. (SSHM10-5T=DSM 114355T= KACC 21937T=NBRC 115506T) are proposed.

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3