Methylobacterium terricola sp. nov., a gamma radiation-resistant bacterium isolated from gamma ray-irradiated soil

Author:

Kim Jiyoun1,Chhetri Geeta1,Kim Inhyup1,Lee Byungjo1,Jang Wonhee1,Kim Myung Kyum2,Seo Taegun1

Affiliation:

1. Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea

2. Department of Bio & Environmental Technology, Seoul Women’s University, Seoul 01797, Republic of Korea

Abstract

A gamma radiation-resistant and pink-pigmented bacterial strain, designated as 17Sr1-39T, was isolated from a gamma ray-irradiated soil sample collected in the Republic of Korea. Cells were Gram-stain-negative, strictly aerobic, flagellated, asporogenous, rod-shaped and methylotrophic. Results of 16S rRNA gene sequence analysis showed that strain 17Sr1-39T was phylogenetically related to Methylobacterium currus PR1016AT (97.3 %), Methylobacterium aquaticum DSM 16371T (97.2 %), Methylobacterium platani PMB02T (97.0 %), Methylobacterium frigidaeris IER25-16T (96.6 %), Methylobacterium terrae 17Sr1-28T (96.6 %) and Methylobacterium organophilum JCM 2833T (93.4 %). The G+C content calculated based on the genome sequence was 70.4 mol%. The average nucleotide identity and in silico DNA–DNA hybridization values between strain 17Sr1-39T and M. currus , M. aquaticum , M. platani , M. frigidaeris , M. terrae and M. organophilum were 77.3–89.9 and 22–38.2 %, respectively. The predominant fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The predominant quinone was ubiquinone 10 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on the data from phenotypic tests and genotypic differences between strain 17Sr1-39T and its close phylogenetic relatives, strain 17Sr1-39T represented a new species belonging to the genus Methylobacterium , for which the name Methylobacterium terricola sp. nov. (=KACC 52905T=NBRC 112874T) is proposed.

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3