Acinetobacter albensis sp. nov., isolated from natural soil and water ecosystems

Author:

Krizova Lenka1,Maixnerova Martina1,Sedo Ondrej2,Nemec Alexandr1

Affiliation:

1. Laboratory of Bacterial Genetics, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic

2. Research Group Proteomics, Central European Institute of Technology and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic

Abstract

We have studied the taxonomic position of a phenetically unique group of eight strains of the genus Acinetobacter which were isolated from soil and water samples collected in protected landscape areas in the Czech Republic. Each of the comparative sequence analyses of the 16S rRNA, gyrB and rpoB genes showed that the eight strains formed a cohesive and tight cluster (intracluster sequence identities of ≥ 99.9 %, ≥ 98.5 % and ≥ 97.7 %, respectively), which was clearly separated from all hitherto known species of the genus Acinetobacter ( ≤ 98.6 %, ≤ 84.5 % and ≤ 89.3 %, respectively). Congruent with these findings were the results of comparative sequence analysis of three additional housekeeping genes (gltA, pyrG and recA). This genotypic distinctness was mirrored by the uniqueness of the combination of a number of independent phenotypic markers including the whole-cell spectra produced by matrix-assisted laser desorption ionization time-of-flight (MALDI-ToF) MS and physiological and metabolic features. The most useful phenotypic features to differentiate the eight strains from all known species of the genus Acinetobacter were the ability to assimilate tricarballylate and the inability to grow at 35 °C or to assimilate ethanol or l-histidine. We conclude that the eight strains represent a novel environmental species for which the name Acinetobacter albensis sp. nov. is proposed. The type strain is ANC 4874T ( = CCUG 67281T = CCM 8611T).

Funder

Czech Science Foundation

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3