Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services

Author:

Ferraz Helene Luisa Caroline12,Marçon Delamuta Jakeline Renata12,Augusto Ribeiro Renan3,Ormeño-Orrillo Ernesto4,Antonio Rogel Marco5,Martínez-Romero Esperanza5,Hungria Mariangela213

Affiliation:

1. Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil

2. Universidade Estadual de Londrina, Dept. of Microbiology, C.P. 10.011, 86057-970, Londrina, Paraná, Brazil

3. Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B – Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Distrito Federal, Brazil

4. Universidad Nacional Agraria La Molina, Av. La Molina s/n La Molina, Lima, Peru

5. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico

Abstract

Symbiotic nitrogen-fixing bacteria, commonly called rhizobia, are agronomically important because they can provide significant amounts of nitrogen to plants and help in recovery of impoverished soils and improvement of degraded environments. In recent years, with advances in molecular techniques, several studies have shown that these bacteria have high levels of genetic diversity, resulting in taxonomic reclassifications and descriptions of new species. However, despite the advances achieved, highly conserved 16S ribosomal genes (16S rRNA) do not elucidate differences between species of several genera, including the genus Bradyrhizobium. Other methodologies, such as multilocus sequence analysis (MLSA), have been used in such cases, with good results. In this study, three strains (SEMIAs 690T, 6387 and 6428) of the genus Bradyrhizobium, isolated from nitrogen-fixing nodules of Centrosema and Acacia species, without clear taxonomic positions, were studied. These strains differed from genetically closely related species according to the results of MLSA of four housekeeping genes (dnaK, glnII, gyrB and recA) and nucleotide identities of the concatenated genes with those of related species ranged from 87.8 % to 95.7 %, being highest with Bradyrhizobium elkanii. DNA–DNA hybridization (less than 32 % DNA relatedness) and average nucleotide identity values of the whole genomes (less than 90.5 %) indicated that these strains represented a novel species, and phenotypic traits were determined. Our data supported the description of the SEMIA strains as Bradyrhizobium viridifuturi sp. nov., and SEMIA 690T ( = CNPSo 991T = C 100aT = BR 1804T = LMG 28866T), isolated from Centrosema pubescens, was chosen as type strain.

Funder

CNPq

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3