Bioaccumulation of Heavy Metals using Selected Organisms Isolated from Electronic Waste Dumpsite of two South-Western States in Nigeria

Author:

Aderonke Akintokun K.1,Oladimeji Onatunde O.1,Shittu Olufunke B.1,Okeyode Itunu C.2,Taiwo Michael O.1

Affiliation:

1. College of Biological Sciences, Federal University of Agriculture, Abeokuta, Nigeria

2. College of Physical Sciences, Federal University of Agriculture, Abeokuta, Nigeria

Abstract

Heavy metals from electronic wastes can accumulate to alarming concentrations in soils, causing significant detrimental impacts on human life and the environment. Bioaccumulation of heavy metals by bacteria and fungi has been a major focus of most bioremediation studies owing to the excellent metal-binding properties. The current study was conducted to isolate the most promising Zn, Cu and Pb tolerant microorganisms from contaminated soils, and to assess their metal accumulating abilities. Bacillus licheniformis, B. polymyxa, Pseudomonas aeruginosa, Micrococcus roseus, Aspergillus niger and A. flavus were selected for the bioaccumulation study, based on their known tolerance to heavy metals. Bacillus licheniformis was most efficient in the removal of Cu (71.3 %) and Pb (70.1 %). Pb accumulation for Aspergillus flavus was 65.76 %. Zn accumulation for Pseudomonas aeruginosa and Aspergillus niger were 74.1 % and 78.3 %, respectively. This study concluded that all these microorganisms have potential for bioremediating soil environments contaminated with heavy metals.

Publisher

Environmental Research Institute, Chulalongkorn University

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biological approaches for E-waste management: A green-go to boost circular economy;Chemosphere;2023-09

2. Challenges and Approaches in E-waste Management;Microbial Technology for Sustainable E-waste Management;2023

3. E-Waste and Its Hazard Management by Specific Microbial Bioremediation Processes;Microbial Rejuvenation of Polluted Environment;2021

4. Application of nanotechnology in the remediation of heavy metal toxicity;New Trends in Removal of Heavy Metals from Industrial Wastewater;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3