On Some Aspects of Compactness in Metric Spaces

Author:

Isabu Hillary AmonyelaORCID,Ojiema Michael OnyangoORCID

Abstract

In this paper, we investigate the generalizations of the concepts from Heine-Borel Theorem and the Bolzano-Weierstrass Theorem to metric spaces. We show that the metric space X is compact if every open covering has a finite subcovering. This abstracts the Heine-Borel property. Indeed, the Heine-Borel Theorem states that closed bounded subsets of the real line R are compact. In this study, we rephrase compactness in terms of closed bounded subsets of the real line R, that is, the Bolzano-Weierstrass theorem. Let X be any closed bounded subset of the real line. Then any sequence (xn) of the points of X has a subsequence converging to a point of X. We have used these interesting theorems to characterize compactness in metric spaces.

Publisher

AJER Publishing

Reference6 articles.

1. Aubin JP. Applied functional analysis. (3rd Edition) John Wiley and Sons. (2011)

2. Balakrishnan AV. Applied Functional Analysis. (2nd Edition.) Springer Science and Business Media. (2012).

3. Kreyszig, E. Introductory functional analysis with applications. John Wiley and Sons. (1991)

4. Keremedis, K. (2016). On sequentially compact and related notions of compactness of metric spaces in ZF. Bull. Polish Acad. Sci. Math, 64, 29-46. https://doi.org/10.4064/ba8087-12-2016

5. Mykhaylyuk, V., and Myronyk, V. (2020). Compactness and completeness in partial metric spaces. Topology and its Applications, 270, 106925. https://doi.org/10.1016/j.topol.2019.106925

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3