Precision Public Health: Empowering Communities with Hyperlocal Data for Targeted Interventions and Improved Outcomes

Author:

Bonnett MichaelaORCID,Kennedy MeaghanORCID,Okala OdiraaORCID,Garstka TeriORCID

Abstract

Background Precision public health is an effective strategy for reaching the last mile in service delivery, but is frequently hampered by its dependence on unattainable data standards and the non-transferability of the solutions designed. This paper proposes a five-part system involving 1) dynamic data governance, 2) hyperlocal community data, 3) data synthesis and analysis, 4) the design and implementation of precision interventions, and 5) correlation between community data and traditional outcome data. Recent studies of community network data have found the connectedness of communities to be positively correlated with community social and environmental outcomes. Taking advantage of hyperlocal community data is therefore a promising approach to improve community outcomes by characterizing and optimizing for greater connectivity. Methods Collection and governance of hyper-local data that is community-owned can be accomplished through such transferable systems as IRIS, a community-led referral network originally designed for multi-sector social and healthcare organizations. Using this data, communities can identify precise areas of intervention through descriptive and network analysis techniques, and design a responsive, community-led intervention. Immersive Innovation Labs, an applied learning approach, is an effective methodology for the adaptive design of innovative precision interventions. This combination of approaches can empower communities and public health professionals. Conclusion The COVID-19 pandemic revealed the impact of chronic understaffing and skills gaps, particularly at the local level. This paper aims to broaden the definition of precision public health as a response, beyond the traditional application that is dependent on big, non-contextual data sources. Reframing precision public health to a methodology dependent on community-owned, ongoing data collection allows the design of hyper-local solutions while shifting the burden of scalability to data collection technology. While challenges in implementation remain, precision is necessary to make public health and communities more responsive and effective in delivering equitable health outcomes and reaching the last mile.

Publisher

Orange Sparkle Ball

Reference5 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3