The Mapping Properties of the Quaternionic Segal-Bargmann Transform on <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'>
<mrow>
<msup>
<mstyle mathvariant='bold' mathsize='normal'><mi>L</mi></mstyle>
<mstyle mathvariant='bold' mathsize='normal'><mi>p</mi></mstyle>
</msup>
</mrow>
</math>
Publisher
Hans Publishers
Reference7 articles.
1. Quaternionic quantum field theory
2. Alpay, D., Colombo, F., Sabadini, I. and Salomon, G. (2014) The Fock Space in the Slice Hyperholomorphic Setting. In: Bernstein, S., Kähler, U., Sabadini, I., Sommen, F., Eds., Hypercomplex Analysis: New Perspectives and Applications, Trends in Mathematics, 43-59.
3. A Quaternionic Analogue of the Segal–Bargmann Transform
4. The Bargmann transform on Lp(R)
5. A new theory of regular functions of a quaternionic variable