A Fault Diagnosis Model for Rolling Bearings Based on Improved Convolutional Neural Network
-
Published:2024
Issue:01
Volume:13
Page:183-193
-
ISSN:2324-8696
-
Container-title:Modeling and Simulation
-
language:
-
Short-container-title:MOS
Publisher
Hans Publishers
Reference11 articles.
1. An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis
2. Oil-Whirl Fault Modeling, Simulation, and Detection in Sleeve Bearings of Squirrel Cage Induction Motors
3. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
4. 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56.
5. 乔志城, 刘永强, 廖英英. 改进经验小波变换与最小熵解卷积在铁路轴承故障诊断中的应用厂[J]. 振动与冲击, 2021, 40(2): 81-90.