Fabrication by AC Deposition and Antimicrobial Properties of Pyramidal-Shaped Cu2O-TiO2 Heterostructures

Author:

Žalnėravičius Rokas1,Paškevičius Algimantas1,Kovger Jelena1,Jagminas Arūnas1

Affiliation:

1. Centre for Physical Sciences and Technology, Institute of Chemistry, Vilnius, Lithuania Institute of Botany of Nature Research Centre, Vilnius, Lithuania

Abstract

Nanoparticulate surfaces possessing antimicrobial and fungicidal properties under visible light illumination have found wide applications in a number of fields. In this study, titania nanotubes, as well as titania compact films were designed with pure Cu2O crystals in a mildly acidic copper acetate solution using a simple alternating current (AC) deposition approach. In this way, the thermally oxidized Ti substrate was coated by densely packed pyramidal and bi-pyramidal shaped Cu2O crystals with dominant (111) planes and investigated against several types of fungi and bacteria. For comparison, TiO2 nanotube (TiNT) films were also decorated with similar crystals and tested. The results showed that, compared to bare TiO2 films, both Cu2O-in-TiNT and Cu2O-on-TiO2 heterostructures exhibited remarkably enhanced activity against tested fungi and bacteria. We also demonstrated that the high photoactivity of these crystals remained even after 50 h stability tests under bright light illumination. The results obtained from in vitro tests indicated that Cu2O-in/on-TiO2 heterostructures show promise as visible light driven antimicrobial materials.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3