A Fast Feature Points-Based Object Tracking Method for Robot Grasp

Author:

Yang Yang1,Cao Qixin1

Affiliation:

1. Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China

Abstract

In this paper, we propose a fast feature points-based object tracking method for robot grasp. In the detection phase, we detect the object with SIFT feature points extraction and matching. Then we compute the object's image position with homography constraints and set up an interest window to accommodate the object. In the tracking phase, we only focus on the interest window, detecting feature points from the window and updating the window's position and size. Our method is of special practical meaning in the case of service robot grasp. Because when the robot grasps the object, the object's image size is usually small relative to the whole image, it is unnecessary to detect the whole image. On the other hand, the object is partially occluded by the robot gripper. SIFT is good at dealing with occlusion, but it is time consuming. Hence, by combining SIFT and an interest window, our method gains the ability to deal with occlusion and can satisfy the real-time requirements at the same time. Experiments show that our method exceeds several leading feature points-based object tracking methods in real-time performance.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Interactive System to Control a Humanoid Robot using Vision and Voice;2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC);2022-11-10

2. A 3D Vision-Based Conveyor Tracking System for Pick-and-Sort Robotic Applications;2021 6th International Conference on Robotics and Automation Engineering (ICRAE);2021-11-19

3. Real-time vision-based grasping randomly placed object by low-cost robotic arm using surf algorithm;IOP Conference Series: Materials Science and Engineering;2020-10-01

4. Parallel tracking and detection for long-term object tracking;International Journal of Advanced Robotic Systems;2020-03-01

5. Adaptive computer vision-based 2D tracking of workers in complex environments;Automation in Construction;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3