A Sliding Mode Control-Based on a RBF Neural Network for Deburring Industry Robotic Systems

Author:

Tao Yong1,Zheng Jiaqi2,Lin Yuanchang3

Affiliation:

1. Beihang University, Beijing, China

2. School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan, China

3. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China

Abstract

A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network parameters are derived by a Koski function algorithm to ensure the network convergences and enacts stable control. The simulations and experimental results of the deburring robot system are provided to illustrate the effectiveness of the proposed RBFNN-SMC control method. The advantages of the proposed RBFNN-SMC method are also evaluated by comparing it to existing control schemes.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Reference30 articles.

1. Variable Structure Systems With Sliding Modes in Motion Control—A Survey

2. Force and Stiffness Backstepping-Sliding Mode Controller for Pneumatic Cylinders

3. Integral Sliding Mode Control for Nonlinear Systems With Matched and Unmatched Perturbations

4. Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO

5. Topalov A V, Kaynak O, Shakev N G. Neural network identification, predictive modeling and control with a sliding mode learning mechanism: an application to the robotic manipulators[C]//First International IEEE Symposium “Intelligent Systems”, Proceedings. IEEE, 2002:102–107.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3