Silver Molybdate and Silver Tungstate Nanocomposites with Enhanced Photoluminescence

Author:

De Santana Yuri V. B.1,Gomes José Ernane Cardoso2,Matos Leandro2,Cruvinel Guilherme Henrique2,Perrin André3,Perrin Christiane3,Andrès Juan4,Varela José A.2,Longo Elson1

Affiliation:

1. CDMF/INCTMN-UNESP, Universidade Estadual Paulista, Araraquara, SP, Brazil

2. CDMF/INCTMN-UFSCar, Universidade Federal de São Carlos, São Carlos, SP, Brazil

3. Université de Rennes 1, Rennes cedex, France

4. Department of Experimental Sciences, Univ Jaume I, Spain

Abstract

Silver molybdate (Ag2MoO4) and silver tungstate (Ag2WO4) nanomaterials were prepared using two complementary methods, microwave assisted hydrothermal synthesis (MAH) (pH 7, 140 °C) and co-precipitation (pH 4, 70 °C), and were then used to prepare two core/shell composites, namely α-Ag2WO4/ β-Ag2MoO4 (MAH, pH 4, 140 °C) and β-Ag2MoO4/ β-Ag2WO4 (co-precipitation, pH 4, 70 °C). The shape and size of the microcrystals were observed by field emission scanning electron microscopy (FE-SEM), different morphologies such as balls and nanorods. These powders were characterized by X-ray powder diffraction and UV-vis (diffuse reflectance and photoluminescence). X-ray diffraction patterns showed that the Ag2MoO4 samples obtained by the two methods were single-phased and belonged to the β-Ag2MoO4 structure (spinel type). In contrast, the Ag2WO4 obtained in the two syntheses were structurally different: MAH exhibited the well-known tetrameric stable structure β-Ag2WO4, while co-precipitation afforded the metastable β-Ag2WO4 allotrope, coexisting with a weak amount of the α;-phase. The optical gap of β-Ag2WO4 (3.3 eV) was evaluated for the first time. In contrast to β-Ag2MoO4/ β-Ag2WO4, the α-Ag2WO4/ β-Ag2MoO4 exhibited strongly-enhanced photoluminescence in the low-energy band (650 nm), tentatively explained by the creation of a large density of local defects (distortions) at the core-shell interface, due to the presence of two different types of MOx polyhedra in the two structures.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3