Affordance Learning Based on Subtask's Optimal Strategy

Author:

Min Huaqing1,Yi Chang'an1,Luo Ronghua1,Bi Sheng1,Shen Xiaowen1,Yan Yuguang1

Affiliation:

1. South China University of Technology, Guangzhou, China

Abstract

Affordances define the relationships between the robot and environment, in terms of actions that the robot is able to perform. Prior work is mainly about predicting the possibility of a reactive action, and the object's affordance is invariable. However, in the domain of dynamic programming, a robot's task could often be decomposed into several subtasks, and each subtask could limit the search space. As a result, the robot only needs to replan its sub-strategy when an unexpected situation happens, and an object's affordance might change over time depending on the robot's state and current subtask. In this paper, we propose a novel affordance model linking the subtask, object, robot state and optimal action. An affordance represents the first action of the optimal strategy under the current subtask when detecting an object, and its influence is promoted from a primitive action to the subtask strategy. Furthermore, hierarchical reinforcement learning and state abstraction mechanism are introduced to learn the task graph and reduce state space. In the navigation experiment, the robot equipped with a camera could learn the objects' crucial characteristics, and gain their affordances in different subtasks.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Affordance Action Learning with State Trajectory Representation for Robotic Manipulation;2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids);2019-10

2. Computational models of affordance in robotics: a taxonomy and systematic classification;Adaptive Behavior;2017-09-18

3. Affordance Research in Developmental Robotics: A Survey;IEEE Transactions on Cognitive and Developmental Systems;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3