Cost-Benefit Analysis as a Basis for Risk-Based Rockfall Protection Forest Management

Author:

Moos Christine,Dorren Luuk

Abstract

Mountain forests fulfill an important protective effect being the reduction of risk due to natural hazards. Knowing the value of this service is required to efficiently allocate financial resources in protection forest and risk management. In this chapter, we evaluate the protective effect of forests against rockfall at local and regional scale using a risk-based approach. We present a method to quantify rockfall risk under current forest conditions for a case study region along the Gotthard highway (Switzerland). Rockfall runout zones and relative frequencies were determined based on the energy line principle and occurrence frequencies were estimated based on inventory data. We quantified the protective effect of the current forest using a statistical approach and calculated the potential risk without forest. The risk reduction provided by the forest varies between 23 and 60% or 400 and 4500 CHF/(year.ha−1). In a second step, we evaluated a single protection forest complex calculating its Net Present Value (NPV) for a time frame of 100 years based on the risk reduction and compared it to technical protection measures. The NPV of the current forest is positive, whereas protection measure variants including rockfall nets have a highly negative NPV. The results evidence the efficient risk reduction of rockfall protection forests. The presented methods allow for a differentiated procedure for protection forest planning at local and regional scale. A simple risk approach requiring a manageable data set enables practitioners to prioritize forest management. A more detailed economic analysis of protection forest efficiency finally facilitates the planning of protection forest measures at local scale.

Publisher

IntechOpen

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accounting for the effect of forest and fragmentation in probabilistic rockfall hazard;Natural Hazards and Earth System Sciences;2023-06-28

2. Modeling Protective Forests for Gravitational Natural Hazards and How It Relates to Risk-Based Decision Support Tools;Protective Forests as Ecosystem-based Solution for Disaster Risk Reduction (Eco-DRR);2022-12-21

3. Risk-Based Decision Support for Protective Forest and Natural Hazard Management;Protective Forests as Ecosystem-based Solution for Disaster Risk Reduction (Eco-DRR);2022-12-21

4. Protective Forests for Ecosystem-based Disaster Risk Reduction (Eco-DRR) in the Alpine Space;Protective Forests as Ecosystem-based Solution for Disaster Risk Reduction (Eco-DRR);2022-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3