Author:
Kaur Taruneet,Kapila Rajeev,Kapila Suman
Abstract
Bone is an active tissue that works as a tissue and an organ as well. It is constituted of cells and blood vessels by nearly 10% of its volume, while the rest 90% is majorly contributed by extracellular portion. Bone is a living structure stably undertaking continual remodeling between bone formation and bone resorption, where bone-forming cells (osteoblasts) and bone-resorbing cells (osteoclasts) exhibit a crucial role. The differentiation process of osteoblasts and osteoclasts takes place in a balanced manner under normal conditions. This intricate balance is chiefly sustained by biochemical signaling cascades, facilitating accurate bone homeostasis in the body. Loss of balance/misregulated signaling in the bone development or disruption may lead to pathological conditions such as osteoporosis, arthritis, etc. Among several regulators for bone-signaling pathways, microRNAs have appeared as an imperative control of gene expression at the level of post-transcription while addressing the genes that control bone remodeling with appropriate responses in the pathogenesis and perhaps the management of bone diseases. Further, microRNAs control the proliferation and differentiation of osteoblasts and osteoclasts, which finally influence the bone formation. Hence, there is a great possibility in exploiting microRNAs as putative therapeutic targets for the medical relief of bone associated disorders, including osteoporosis.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献