The Impacts of Soil Degradation Effects on Phytodiversity and Vegetation Structure on Atacora Mountain Chain in Benin (West Africa)

Author:

Okou Farris,Assogbadjo Achille,Augustin Sinsin Brice

Abstract

Atacora mountain is a particular ecosystem of West Africa where soil degradation occurs. The present study assessed the impacts of physical soil degradation on vegetation in the Beninese portion of this mountain chain. Phytosociological surveys were carried out along line transects from plain to summit within 22 plots of 30 m x 30 m. Based on indicators of physical soil degradation each plot was classified into one soil degradation class (Light, Moderate, High or Extreme). Impacts on plant diversity were assessed by comparing the floristic composition of soil degradation classes with the index of similarity of Jaccard. Variations between soil degradation classes of species richness, species chorological types, species life forms and species dispersal were also tested using a discriminant analysis combined with ANOVA. The Multi-Response Permutation Procedures analysis was used to pairwise compare the soil degradation classes based on the cover data of the species lists. All soil degradation classes were dissimilar, depending on the floristic composition. Discriminant analysis and ANOVA performed on biodiversity indicators had shown that species richness, and the number of regional species, phanerophytes and sarcochory decreased along the increasing degradation gradient in contrast to the number of species with wide distribution, therophytes and sclerochory. With regard to vegetation structure, the results had shown that only moderately and highly degraded soils presented the similar vegetation type. Physical soil degradation induced modification of floristic composition, phytodiversity loss and modification of vegetation structure. These results showed that the soil degradation gradient corresponds to a vegetation disturbance gradient.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3