Author:
Bouchiba Nouha,Sallem Souhir,Ben Ali Kammoun Mohamed,Chrifi-Alaoui Larbi,Drid Saïd
Abstract
In the last few decades, among the wide range of renewable energy sources, wind energy is widely used. Variable speed wind energy conversion systems based on double fed induction generator have a considerable interest mostly in case of islanded networks and/or isolated applications. In this paper, as a means to supply remote areas, an investigation of a wind energy conversion system (WECS) based on a double fed induction generator (DFIG) is carried out. The presence of both wind turbine aerodynamics and DFIG coupled dynamics causes strong nonlinearities in the studied system. Wind speed and demanded power variations have a major impact on the quality of the produced energy. In order to control and maintain the stator output voltage and frequency at their nominal values (220 V/50 Hz) under wind speed and load variations, this work presents a study of three kinds of controllers: PI, Back-Stepping and Sliding Mode controllers. These controllers are integrated in the studied system and a comparison of their dynamic performances has been developed. Moreover, in order to ensure the rotor side converter safety on the one hand and to guarantee an optimal operation of the DFIG on the other hand, a management strategy is proposed in this work. Simulation results are performed using Matlab/Simulink environment and show the effectiveness and the accuracy of each controller compared to others mainly with the presence of wind speed and load demand variations.
Reference28 articles.
1. Ihssen Hamzaoui, Farid Bouchafaa, Abdelaziz Talha. Advanced control for wind energy conversion systems with flywheel storage dedicated to improving the quality of energy. International journal of hydrogen energy 41(2016) 20832–20846
2. Donghua Wang. A Novel Variable Speed Diesel Generator Using Doubly Fed Induction Generator and Its Application in Decentralised Distributed Generation Systems. Ph.D. thesis, Curtin University, School of Electrical and Computer Engineering 2012
3. C. Evangelista, P. Puleston, F. Valenciaga. Wind turbine efficiency optimization. Comparative study of controllers based on second order sliding modes. International journal of hydrogen energy 35(2010) 5934–5939
4. S. Tamalouzt, N. Benyahia, T. Rekioua, D. Rekioua, R. Abdessemed. Performances analysis of WT-DFIG with PV and fuel cell hybrid power sources system associated with hydrogen storage hybrid energy system. International journal of hydrogen energy 41(2016) 21006–21021
5. C.A. Evangelista, F. Valenciaga, P. Puleston. Multivariable 2-sliding mode control for a wind energy system based on a double fed induction generator. International journal of hydrogen energy 37(2012)10070–10075
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献