Machine Learning Algorithms from Wireless Sensor Network’s Perspective

Author:

Chandra Gangwar Rakesh,Singh Roohi

Abstract

In the last few decades, wireless sensor network (WSN) emerged as an important network technology for real-time applications considering its size, cost-effectiveness and easily deployable ability. Under numerous situations, WSN may change dynamically, and therefore, it requires a depreciating dispensable redesign of the network. Machine learning (ML) algorithms can manage the dynamic nature of WSNs better than traditionally programmed WSNs. ML is the process of self-learning from the experiences and acts without human intervention or re-program. The current Chapter will cover various ML Algorithms for WSN and their pros and cons. The reasons for the selection of particular ML techniques to address an issue in WSNs, and also discuss several open issues related to ‘ML for WSN’.

Publisher

IntechOpen

Reference21 articles.

1. Akyildiz IF, Weilian S, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks. IEEE Communications Magazine. 2002;40(8):102-114

2. Romer K, Mattern F. The design space of wireless sensor networks. IEEE Wireless Communications. 2004;11(6):54-61

3. Kalantary S, Taghipour S. A survey on architectures, protocols, applications and management in wireless sensor networks. Journal of Advanced Computer Science & Technoloy. 2014;16:1-11

4. Đurišić MP, Tafa Z, Dimić G, Milutinović V. A survey of military applications of wireless sensor networks. In: Proceedings of the 2012 Mediterranean Conference on Embedded Computing (MECO); Bar, Montenegro: IEEE (Piscataway); 2012. pp. 19-21

5. Bokareva T, Hu W, Kanhere S, Ristic B, Gordon N, Bessell T, et al. Wireless sensor networks for battlefield surveillance. In: Proceedings of the Land Warfare Conference. Brisbane, Australia: MDPI (Switzerland); 2006. pp. 1-8

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3