Modeling of Laser-Irradiated Biological Tissue

Author:

Kumar Sumit

Abstract

The laser has been widely used in medical fields. One application of the laser is laser-based photo-thermal therapy, wherein the short-pulsed laser is generally used to destroy the cancerous cells. The efficacy of the laser-based photo-thermal therapy can be improved if we minimize the thermal damage to the surrounding healthy tissue. So, it is essential to understand the laser-tissue interaction and thermal behavior of biological tissue during laser-based photo-thermal therapy. The light propagation through the biological tissue is generally mathematically modeled by the radiative heat transfer equation (RTE). The RTE has been solved using the discrete ordinate method (DOM) to determine the intensity inside the laser-irradiated biological tissue. Consequently, the absorbed photon energy act as the source term in the Fourier/non-Fourier model-based bio-heat transfer equation to determine the temperature distribution inside the biological tissue subjected to short-pulse laser irradiation. The non-Fourier model-based bio-heat transfer equation is numerically solved using the finite volume method (FVM). The numerical results have been compared with the analytical results obtained using the finite integral transform (FIT) technique. A comparative study between the Fourier and non-Fourier heat conduction models has also been carried out.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3