Geometric Accuracy of Digital Twins for Structural Health Monitoring

Author:

Lu Ruodan,Rausch Chris,Bolpagni Marzia,Brilakis Ioannis,T. Haas Carl

Abstract

We present an exploratory analysis of the geometric accuracy of digital twins generated for existing infrastructure using point clouds. The Level of Geometric Accuracy is a vital specification to measure the twinning quality of the resulting twins. However, there is a lack of a clear definition of the Level of Geometric Accuracy for twins generated in the operation and maintenance stage, especially for structural health monitoring purposes. We critically review existing industry applications and twinning methods. To highlight the technical challenges with creating high-fidelity digital replicas, we present a case study of twinning a bridge using real-world point clouds. We do not provide conclusive methods or results but envisage potential twinning strategies to achieve the desired geometry accuracy. This chapter aims to inform the future development of a geometric accuracy-based evaluation system for use in twinning and updating processes. Since a major barrier for a fully automated twinning workflow is the lack of rigorous interpretation of ‘geometric accuracy’ outside design environments, it is imperative to develop comprehensive standards to guide practitioners and researchers in order to achieve model certainty. As such, this chapter also aims to educate all stakeholders in order to minimise risk when drafting contracts and exchanging digital deliverables.

Publisher

IntechOpen

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3