Mechanical System Kinematics and Dynamics on Differentiable Manifolds

Author:

J. Haug Edward,Pavesic Petar

Abstract

Topological and vector space attributes of Euclidean space are employed to create a dierentiable manifold structure for holonomic mechanical system kinematics and dynamics. A local kinematic parameterization is presented that establishes the regular conguration space as a dierentiable manifold. Topological properties of Euclidean space show that this manifold is naturally partitioned into disjoint, maximal, path connected, singularity free domains of kinematic and dynamic functionality. Using the manifold parameterization, d'Alembert variational equations of mechanical system dynamics yield well-posed ordinary dierential equations of motion on these domains, without introducing Lagrange multipliers. Solutions of the differential equations satisfy kinematic conguration, velocity, and acceleration constraints and the variational equations of dynamics. Two examples, one planar and one spatial, are treated using the formulation presented. Solutions obtained are shown to satisfy all three forms of kinematic constraint to within specied error tolerances, using fourth order Runge-Kutta numerical integration methods.

Publisher

IntechOpen

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3