Perspective Chapter: Linear Regression and Logistic Regression Models

Author:

Kumar Ghosh Dilip

Abstract

In this chapter, we have discussed the detailed concept of simple linear regression and logistic regression analysis. Further we have discussed the procedure of computing regression coefficients, standard error, t test, Z test, p value and 95% confidence intervals for simple linear regression and logistic regression analysis. We also explained that for testing the simple linear regression coefficient, we use t test, whereas, for testing the logistic regression coefficient, we use Z test. Several examples on medical data are considered and various related statistics were computed using manually, R studio package, and Jamovi.

Publisher

IntechOpen

Reference6 articles.

1. Montogomery DC, Peck EA, Vining GG. Introduction to Linear Regression Analysis. Wiley. © 2019-2021 Pluripotent Limited

2. Rencher AC, Bruce Schaalje G. Linear Models in Statistics. New Jersey: John Wiley; 2008

3. Swaminathan S. Regression Detailed View. Published in Towards Data Science; 2018. Available from:

4. Lane DM. Introduction to Linear Regression, Chapter 14 Regression. Available from:

5. Noce AA, McKeown L. A new benchmark for internet use: A logistic modeling of factors influencing internet use in Canada, 2005. Government Information Quarterly. 2008;:462-476

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3