Application of Transmission Electron Microscopy to Detect Changes in Pancreas Physiology

Author:

Skelin Klemen Maša,Dolenšek Jurij,Valladolid-Acebes Ismael,Stožer Andraž,Lipovšek Saška

Abstract

Insulin resistance in key target organs and beta cell dysfunction due to gluco- and lipotoxicity, are the two main factors driving type 2 diabetes mellitus pathogenesis. Recently, it has been suggested that ectopic fat deposition in the pancreas, named non-alcoholic fatty pancreas disease, occurs in metabolic syndrome, and may play an etiological role in islet dysfunction and damage the exocrine pancreas, increasing its susceptibility to pancreatitis and pancreatic cancer. In this chapter, we present transmission electron microscopy (TEM) as a valuable method to detect early changes in the ultrastructure of pancreatic cells during the development of the metabolic syndrome in mice fed with a western diet (WD). Mice fed with a WD develop pathological ultrastructural alterations in the exocrine and endocrine cells. We demonstrate how to use image segmentation methods and ultrastructural morphometry to analyze and quantify structural changes in cellular organelles and evaluate the presence of lipid droplets, autophagic structures, and vacuolization. Since ultrastructural lesions can be detected early during the progression of the metabolic syndrome, are in many aspects subtle, and by far precede cell apoptosis, necrosis, fat infiltration, and overt functional changes, TEM is not only a suitable but probably the crucial method for detecting early pancreas dysfunction.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3