Peat as a Potential Biomass to Remove Azo Dyes in Packed Biofilters

Author:

Angélica Guillén Rosa,Lizama-Bahena Cristina,Gerardo Trevino-Quintanilla Luis,Barragan-Trinidad Martin,Bustos Victoria,Moeller-Chavez Gabriela

Abstract

Azo dyes represent a broad group of environmental pollutants that comprise between 60 and 70% of all the dyes and pigments used. The conventional processes are not efficient in treating effluents from the textile industry. Biofiltration emerges as an unconventional, easy-to-use, effective, and low-cost technology for the treatment of textile effluents. Biofiltration uses microbial consortia that form a biofilm on a filter medium. Peat is an organic matter with the ability to retain high moisture content and represents an attractive option to treat these effluents due to its high porosity, sorption capacity, availability, and low cost. The packing materials used were: peat as an organic biomass, perlite as an inorganic material, and a mixture of peat and perlite. Sorption processes in the biofilter peat-packed material and perlite are discussed dealing with its treatment capacity and as potential removers of azo dyes, their advantages and disadvantages compared with other traditional methods, and a review of operating parameters and design criteria that allow its large-scale application as a possible nonconventional treatment technology. The biofilter with the highest removal capacity was the peat-perlite mixture that achieved a 91% for the organic matter (measured as COD), and a 92% for the color removal (Direct blue 2 dye). with a retention time of 1.18 days.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3