An Aggregated Embodied and Operational Energy Approach

Author:

Resalati Shahaboddin

Abstract

Highly insulated envelopes are an integral part of any net zero energy building with a target to reduce the demand that need to be supplied by the renewable energy and other mitigating measures. While stricter insulation levels can in theory reduce the operational energy demand of buildings, the additional embodied energy investment in the insulations can become significant and not recovered within the expected timeframes. Accounting for embodied energy investment requires a paradigm shift in design of highly insulated buildings and can determine U-value levels that can be justified based on an aggregated operational and embodied energy approach. The following chapter discusses the aggregated approach in more detail showcasing the shortcomings of existing building codes and standards using a case study building. The chapter also reviews the potential barriers of adopting such approaches with a specific focus on the uncertainties of embodied energy data and offers a holistic view on its implications for various end-users and stakeholders within the construction sector. The presented analyses in this chapter depict optimal insulation levels beyond which the additional embodied energy burden cannot be recovered using the associated operational energy savings highlighting the necessity of accounting for embodied energy in developing future design principles for zero energy buildings.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3