Dependent Dirichlet Processes for Analysis of a Generalized Shared Frailty Model

Author:

Zhong Chong,Ma Zhihua,Shen Junshan,Liu Catherine

Abstract

Bayesian paradigm takes advantage of well-fitting complicated survival models and feasible computing in survival analysis owing to the superiority in tackling the complex censoring scheme, compared with the frequentist paradigm. In this chapter, we aim to display the latest tendency in Bayesian computing, in the sense of automating the posterior sampling, through a Bayesian analysis of survival modeling for multivariate survival outcomes with the complicated data structure. Motivated by relaxing the strong assumption of proportionality and the restriction of a common baseline population, we propose a generalized shared frailty model which includes both parametric and nonparametric frailty random effects to incorporate both treatment-wise and temporal variation for multiple events. We develop a survival-function version of the ANOVA dependent Dirichlet process to model the dependency among the baseline survival functions. The posterior sampling is implemented by the No-U-Turn sampler in Stan, a contemporary Bayesian computing tool, automatically. The proposed model is validated by analysis of the bladder cancer recurrences data. The estimation is consistent with existing results. Our model and Bayesian inference provide evidence that the Bayesian paradigm fosters complex modeling and feasible computing in survival analysis, and Stan relaxes the posterior inference.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3