Forced Laminar Flow in Pipes Subjected to Asymmetric External Conditions: The HEATT© Platform for Online Simulations

Author:

Alarcón Mariano,Seco-Nicolás Manuel,Pedro Luna-Abad Juan,P. Ramallo-González Alfonso

Abstract

This chapter studies the fluid flow within pipes subjected to thermal asymmetrical boundary conditions. The phenomenon at hand takes place in many real-world industrial situations, such as solar thermal devices, aerial pipelines. A steady-state analysis of laminar forced-convection heat transfer for an incompressible Newtonian fluid is studied. The fluid is considered to flow through a straight round pipe provided with straight fins. For the case studied, axial heat conduction in the fluid has been considered and the effects of the forced convection have been considered to be dominant. A known uniform temperature field is applied at the upper external surface of the assembly. The 3D assembly has been created combining cylindrical and Cartesian coordinates. The governing differential equation system is solved numerically through suitable discretization in a set of different finite volume elements. The results are shown through the thermal profiles in respect of longitudinal and radial-azimuthal coordinates and the problem characteristic length. To facilitate the resolution of this phenomenon, an open computing platform called HEATT©, based on this model, has been developed, and it is also shown here. The platform is now being built and is expected to be freely available at the end of year 2022.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3