A Hybrid Genetic, Differential Evolution Optimization Algorithm

Author:

Stubberud Peter

Abstract

This chapter presents a heuristic evolutionary optimization algorithm that is loosely based on the principles of evolution and natural genetics. In particular, this chapter describes an evolutionary algorithm that is a hybrid of a genetic algorithm and a differential evolution algorithm. This algorithm uses an elitist, ranking, random selection method, several mutation methods and both two level and three level Taguchi crossover. This algorithm is applied to 13 commonly used global numerical optimization test functions, including a spherical, three hyper-ellipsoid, the sum of different powers, Rastrigin’s, Schwefel’s, Griewank’s, Rosenbrock’s valley, Styblinski-Tang, Ackley’s Path, Price-Rosenbrock, and Eggholder’s functions. This algorithm is applied 1000 times to each of the 13 test functions, and the results shows that this algorithm always converges to each of the 13 test function’s global minimum.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3