Abstract
Oxidoreductases consist of a large class of enzymes catalyzing the transfer of electrons from an electron donor (reductant) to an electron acceptor (oxidant) molecule. Since so many chemical and biochemical transformations comprise oxidation/reduction processes, it has long been an important goal in biotechnology to develop practical biocatalytic applications of oxidoreductases. During the past few years, significant breakthrough has been made in the development of oxidoreductase-based diagnostic tests and improved biosensors, and the design of innovative systems for the regeneration of essential coenzymes. Research on the construction of bioreactors for pollutants biodegradation and biomass processing, and the development of oxidoreductase-based approaches for synthesis of polymers and functionalized organic substrates have made great progress. Proper names of oxidoreductases are in a form of “donor:acceptor oxidoreductase”; while in most cases “donor dehydrogenase” is much more common. Common names also sometimes appeared as “acceptor reductase”, such as NAD+ reductase. “Donor oxidase” is a special case when O2 serves as the acceptor. In biochemical reactions, the redox reactions are sometimes more difficult to observe, such as this reaction from glycolysis: Pi + glyceraldehyde-3-phosphate + NAD+ → NADH + H+ + 1,3-bisphosphoglycerate, where NAD+ is the oxidant (electron acceptor), and glyceraldehyde-3-phosphate functions as reductant (electron donor).
Reference33 articles.
1. Husain Q (2017) High yield immobilization and stabilization of oxidoreductases using magnetic nanosupports and their potential applications: an update. Current Catal 6(3):168-187
2. Toone EJ (2010) Advances in enzymology and related areas of molecular biology, Protein evolution, vol 75. Wiley, Hoboken, NJ
3. Laskar AA, Alam MF, Younus H (2017) In vitro activity and stability of pure human salivary aldehyde dehydrogenase. Int J Biol Macromol 96:798-806
4. Nicholas C, Lewis S (1999) Fundamentals of enzymology: the cell and molecular biology of catalytic proteins. Oxford University Press, Oxford
5. Husain, M. F. Ullah (2019). Biocatalysis Enzymatic Basics and Applications , Springer Nature Switzerland https://doi.org/10.1007/978-3-030-25023-2
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献